1 Random Variables

1.1 Concepts

1. A random variable is any function $X: \Omega \rightarrow \mathbb{R}$. It isolates some concept that we care about. For example, when we flip a coin 20 times, then we can define a random variable which is the number of heads that we flip.
A probability mass function (PMF) is a function from \mathbb{R} to $[0,1]$ that is associated to a random variable X. We define $f(x)=P(X=x)=P\left(X^{-1}(\{x\})\right)$.
Two random variables X, Y are called independent if for any subsets $E, F \subset \mathbb{R}$, the subsets $X^{-1}(E), Y^{-1}(F) \subset \Omega$ are independent. To prove that two random variables are independent, we need to show that those two sets are independent for any two choices of E, F (actually, it suffices to only consider E, F as one point sets or that $P(X=x, Y=y)=P(X=x) P(Y=y)$ for any $x, y \in \mathbb{R})$. To prove that they are not independent, we only need to find one counterexample pair E, F.

1.2 Examples

2. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find $P(X \in\{1,3,5\})$ and draw the PMF for X.

Solution: First we draw the PMF. We calculate $P(X=x)$ by counting the number of ways we can roll two die so that the maximum is x and then dividing by the total number of possibilities, which is 36 . So for instance, the only way to get $X=1$ is if we roll $(1,1)$ and hence $P(X=1)=\frac{1}{36}$. Then $P(X=2)=\{(1,2),(2,2),(2,1)\} / 36=$ $\frac{3}{36}$. Thus, we have that

$$
f(1)=\frac{1}{36}, f(2)=\frac{3}{36}, f(3)=\frac{5}{36}, f(4)=\frac{7}{36}, f(5)=\frac{9}{36}, f(6)=\frac{11}{36} .
$$

We draw the PMF with stalks at 1 through 6 of those respective heights. Then $P(X \in\{1,3,5\})=P(X=1)+P(X=3)+P(X=5)=\frac{1}{36}+\frac{5}{36}+\frac{9}{36}=\frac{15}{36}=\frac{5}{12}$.
3. When rolling two die, let Y be equal to the first die roll. Are X, Y independent random variables?

Solution: No. Intuitively, if we know that the first die roll is a 6 , then the maximum has to be a 6 . Mathematically writing that, we see that $P(X=6, Y=6)=P(Y=6)$ and $P(X=6) \neq 1$ so $P(X=6, Y=6) \neq P(X=6) P(Y=6)$.

1.3 Problems

4. True FALSE A RV goes from subsets of Ω to \mathbb{R}.

Solution: A RV goes from Ω unlike the probability function, which goes from subsets of Ω.
5. True FALSE Similar to the probability function, a PMF takes events or subsets of \mathbb{R} and assigns a probability between $[0,1]$.

Solution: The PMF takes single values in \mathbb{R} and assigns a probability between $[0,1]$. This is one reason that we can draw the PMF.
6. I flip a fair coin 4 times. Let X be the number of heads I get. Draw the PMF for X.

Solution: The range is $\{0,1,2,3,4\}$. Then $P(X=x)$ is the number of ways to get x heads over the total number of ways so $P(X=x)=\frac{\binom{4}{x}}{2^{4}}$.
7. I roll two fair four sided die with sides numbered $1-4$. Let X be the product of the two numbers rolled. Find the range of X and draw the PMF for X.

Solution: The range is all products of two numbers in $\{1,2,3,4\}$. This is $\{1,2,3,4,6,8,9,12,16\}$. We calculate:

x	1	2	3	4	6	8	9	12	16
$f(x)$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{1}{16}$

8. (Challenge) I draw 5 cards from a deck of cards. Let X be the number of hearts I draw. What is the range of X and draw the PMF of X. Use this to find the probability that I draw at least 2 hearts.

Solution: The range is $\{0,1,2,3,4,5\}$. To calculate $f(x)=P(X=x)$, we count the number of good ways over the total number of ways. The number of good ways to draw x hearts is to first pick out x hearts out of the 13 hearts, and then fill out the rest of the hand and pick $5-x$ non-heart cards from the remaining 39 cards. Thus $f(x)=\frac{\binom{13}{x}\left(\begin{array}{c}39 \\ 52 \\ 5\end{array}\right)}{\frac{52}{5}}$. Thus, we have that $P(X \geq 2)=P(X=2)+P(X=3)+P(X=$ $4)+P(X=5)=\frac{\binom{13}{2}\binom{39}{3}+\binom{13}{3}\binom{39}{2}+\binom{13}{4}\binom{39}{1}+\binom{13}{5}\binom{39}{0}}{\text {. }}$

